商品カタログ

数学的実践の歴史と哲学ハンドブック(全4巻)

実践の歴史を通して数学の哲学的意味を探究する大型レファレンス刊行

関連ワード:Springer 哲学 数学 数学史 洋書 科学史 科学基礎論  更新日:2024.05.28

数学的実践の歴史と哲学ハンドブック(全4巻)
Handbook of the History and Philosophy of Mathematical Practice

Editors: Bharath Sriraman, Professor of Mathematics, University of Montana (USA)
Editorial Advisory Board: Andrew Aberdein, Florida Institute of Technology, USA, Jody Azzouni,
Tufts University, USA, Otávio Bueno, University of Miami, USA, William Byers, Concordia University, Canada, Carlo Cellucci, Sapienza University of Rome, Italy, Chandler Davis, University of Toronto, Canada (1926-2022), Paul Ernest, University of Exeter, UK, Michele Friend,George Washington University, USA, Reuben Hersh, University of New Mexico, USA (1927-2020), Kyeong-Hwa Lee, Seoul National University, South Korea, Yuri Manin, Max Planck Institute for Mathematics, Germany (1937-2023), Athanase Papadopoulos, University of Strasbourg, France, Ulf Persson, Chalmers University of Technology, Sweden, John Stillwell, University of San Francisco, USA & David Tall, University of Warwick, UK

2024:05 4 vols. 3,260 p. ISBN 978-3-031-40845-8 (Springer) -DE-
EUR 1299.99
Web販売価格:税込¥246,644 / 標準価格:税込¥318,886

*2024年7月29日時点の価格です。実際の価格は、為替レートや出版社の都合により変動いたしますので、最新の価格は以下オンラインストアリンクをご参照ください。
*Web販売価格は、紀伊國屋書店BookWeb Proでご注文され、付帯作業を伴わない納品を行い、弊社標準書式による請求書を発行し遅滞なくお支払いただく場合、あるいは、クレジットカードでお支払いいただく場合に適用される販売価格です。

概要

数学における直観とは、抽象とは、証明とは、何でしょうか。数学の人類文化への貢献を語るうえで、哲学的視座は欠かせません。本書は数学の歴史と哲学の関係を実践を通して解き明かすレファレンスです同じくSpringerから2021年に刊行の好評レファレンス『芸術と科学の数学ハンドブック(全3巻)』(ISBN: 9783319570716に引き続き、モンタナ大学のBharath Sriramanが編集主幹を務めています。 

 4巻の本書は、古代から現代までの数学的実践の歴史を通して、数学の哲学がたどってきた道とその意味を探究します。各章では、今日の数学の哲学を特徴づける起源や議論、方法論、新しい視点を示します。数学、歴史学、哲学などの分野の境界を越えて数学の歴史・哲学的研究に貢献してきた多数の学者たちが、哲学の発展と対比させながらさまざまな時代の多様な数学的実践を詳述します。 

数学的な実践が多様化していく中で、すでに知られたこととこれまで扱われていないことを総合し数学の哲学が向かっていく方向を指し示す必携レファレンスとして、本書をおすすめいたします。 

価格照会・ご購入

※本件についてのお問い合わせ、お見積りについては最寄りの紀伊國屋書店営業所もしくはこちらまでお願いいたします。

収録内容

Volume 1
Section I From Origins to the Natural Historians/Philosophers
Bharath Sriraman

  • Introduction to the Handbook of the History and Philosophy of Mathematical Practice
    Bharath Sriraman
  • The History and Philosophy of Mathematical Practice: From Origins to Natural Historians/Philosophers – A Conversation
    Bharath Sriraman and Reuben Hersh
  • Yuri Ivanovich Manin (1937–2023): Mathematics, Philosophy, and Poetry
    Athanase Papadopoulos
  • The Nature of Mathematical Objects
    Carlo Cellucci
  • The Ghost and the Spirit of Pythagoras
    Arkady Plotnitsky
  • The Metaphysics of Platonism
    Ulf Persson
  • Mathematical Practices Can Be Metaphysically Laden
    Colin Jakob Rittberg
  • Definitions (and Concepts) in Mathematical Practice
    J. W. Coumans
  • Mathematics and the Method of Abstraction
    Kit Fine
  • Leibniz on Number Systems
    Lloyd Strickland
  • Fermat and Descartes in Light of Premodern Algebra and Viète
    Jeffrey A. Oaks
  • Descartes’ Transformation of Greek Notion of Proportionality
    Piotr Błaszczyk
  • Leonhard Euler Between Mathematics and Natural Philosophy: An Introduction to Natural Science Anleitung zur Naturlehre
    Danilo Capecchi
  • Algebraic Versus Geometric Thought and Expression in the Early Calculus
    Viktor Blåsjö
  • Evolution of Leibniz’s Thought in the Matter of Fictions and Infinitesimals
    Monica Ugaglia and Mikhail Katz
  • René Thom: From Mathematics to Philosophy
    Athanase Papadopoulos
  • Heuristics and Mathematical Practice
    Otávio Bueno
  • Finding a Fit Among Philosophical Finitisms
    Eamon Darnell and Aaron Thomas-Bolduc

Section II Mathematician’s Reflections on Practice and Working Philosophy of Mathematics
Athanase Papadopoulos

  • Introduction to Mathematicians’ Reflections on Practice and Working Philosophy of Mathematics
    Athanase Papadopoulos
  • The Anthyphairetic Interpretation of Knowledge as Recollection in Plato’s Meno 80d-86e and 97a-98b
    Stelios Negrepontis
  • The Mystery of Plato’s Receptacle in the Timaeus Resolved
    Stelios Negrepontis and Demetra Kalisperi
  • The Indivisible Line Coincides with the Platonic Intelligible Being
    Stelios Negrepontis
  • Brouwer’s Intuitionism
    Victor Pambuccian
  • Mathematical Practice as Philosophy, with Galois, Riemann, and Grothendieck
    Arkady Plotnitsky
  • “That Which a Minority Construct”: Abelian Mathematics in Abel, Galois, Noether, and Grothendieck
    Arkady Plotnitsky
  • Pavel Florensky and His World
    Athanase Papadopoulos
  • The Practice of Mathematics in a Totalitarian Society
    B. Sossinsky
  • Philosophy Behind Mathematics
    Ken’ichi Ohshika (学習院大学 大鹿健一教授)
  • Some Disillusioned Thoughts About School and Teaching
    Valentin Poénaru

Volume 2
Section III Influences in Twentieth- and Twenty-First-Century Mathematical Practice
Bharath Sriraman and Kyeonghwa Lee

  • Influences in Twentieth- and Twenty-First-Century Mathematical Practice
    Bharath Sriraman and Kyeonghwa Lee
  • The Pell Equation in the Pythagoreans, Theaetetus, and Hindu Mathematics
    Stelios Negrepontis, Vassiliki Farmaki, and Marina Brokou
  • Ancient Indian Mathematics: Sulbasutras – A Mathematical Review
    G. Dani
  • An Ethnoarithmetic Excursion into the Javanese Calendar
    Natanael Karjanto and François Beauducel
  • Historiography of Mathematics from the Mathematician’s Point of View
    Viktor Blåsjö
  • A Tale of Three Cities: Thebes, Babylon, and Alexandria
    Maurice Burke
  • Sir Isaac Newton and Opticks
    Jonah Britton and Bharath Sriraman
  • Olry Terquem’s Forgotten Problem and an EnumerativeCombinatorial Perspective on the Euclidean Algorithm
    Robert G. Donnelly, Molly W. Dunkum, and Rachel McCoy
  • The Ethics of Mathematical Practice
    Paul Ernest
  • Grothendieck: A Short Guide to His Mathematical and Philosophical Work (1949–1991)
    Fernando Zalamea
  • An Uncertain Travel
    Elijah Liflyand
  • The Unreasonable Effectiveness of Mathematics to Generate New Spatial Imaginaries
    Nathalie Sinclair
  • High Mathematics Meets High Finance
    Tom P. Davis

Section IV Practical, Historical, and Philosophical Instances of Probability
Egan J. Chernoff

  • Introduction to Practical, Historical, and Philosophical Instances of Probability
    Egan J. Chernoff
  • How Markov’s Little Idea Transformed Statistics
    Jeffrey S. Rosenthal
  • The Use and Abuse of Probability in Evolutionary Biology
    Jason Rosenhouse
  • Probability Models in Statistical Data Analysis: Uses, Interpretations, Frequentism-as-Model
    Christian Hennig

Section V Constructing the Reals: Paradoxes and Foundations
Paul M. Livingston and Bharath Sriraman

  • Introduction to the History and Philosophy of Mathematical Practice in Constructing the Reals
    Paul M. Livingston
  • The Continuum and the Evolution of the Concept of Real Number
    John L. Bell
  • On Bolzano and Greek Concepts of Continuity
    Piotr Błaszczyk and Marlena Fila
  • Bolzano’s Theory of meßbare Zahlen: Insights and Uncertainties Regarding the Number Continuum
    Elías Fuentes Guillén
  • Abel’s Approach to Elliptic Integrals
    John K. Dagsvik
  • The Absolute Arithmetic Continuum and Its Geometric Counterpart
    Philip Ehrlich

Volume 3
Section VI Practices in Euclidean and Non-Euclidean Geometry
Bharath Sriraman

  • Euclidean and Non-Euclidean Geometry in the History and Philosophy of Mathematical Practice
    Bharath Sriraman
  • Cultures of Mathematical Practice in Alexandria in Egypt: Claudius Ptolemy and His Commentators (Second–Fourth Century CE)
    Alberto Bardi
  • Menelaus’ Spherics in Greek and Arabic Mathematics
    Athanase Papadopoulos
  • Copernicus and Axiomatics
    Alberto Bardi
  • Visual Representations of Euclidean Geometry: Diagrammatic Reasoning in Oliver Byrne’s Work
    Andrea Pedeferri
  • From Friezes to Quasicrystals: A History of Symmetry Groups
    Franka Miriam Brückler and Vladimir Stilinović
  • The Notion of Space in Grothendieck
    John Alexander Cruz Morales
  • Geometry in the Twentieth Century: A Return to Euclid – The Work of Herbert Busemann
    Athanase Papadopoulos

Section VII Logic
Bharath Sriraman

  • Logic in the History and Philosophy of Mathematical Practice
    Valentina Harizanov
  • Model Theory of Nonstandard Structures with Applications
    Roman Kossak
  • Computability Theory
    Valentina Harizanov, Keshav Srinivasan, and Dario Verta
  • Reverse Mathematics
    John Stillwell
  • Countable Nonstandard Models: Following Skolem’s Approach
    Rumen D. Dimitrov and Valentina Harizanov
  • Fermat’s Last Theorem
    Colin McLarty

Section VIII Proof
Bart Van Kerkhove and Joachim Frans

  • Proof in the History and Philosophy of Mathematical Practice: An Introduction
    Joachim Frans and Bart Van Kerkhove
  • Diagrammatic Proofs in Mathematics: (Almost) 20 Years of Research
    Valeria Giardino
  • The Social Epistemology of Mathematical Proof
    Line Edslev Andersen
  • The Values of Mathematical Proofs
    Rebecca Lea Morris
  • Formal Proofs in Mathematical Practice
    Danielle Macbeth
  • The Dark Side of the History of Proof
    Karine Chemla

Section IX Ontology
Bharath Sriraman and Michael N. Fried

  • Ontology in the History and Philosophy of Mathematical Practice: An Introduction
    Michael N. Fried
  • The Algorithmic-Device View of Informal Rigorous Mathematical Proof
    Jody Azzouni
  • Counterpossibles in Mathematical Practice: The Case of Spoof Perfect Numbers
    Alan Baker
  • What Mathematicians Do: Mathematics as Process and Creative Rationality
    William Byers
  • Platonism, De Re, and (Philosophy of) Mathematical Practice
    Marco Panza

Section X Pluralism
Michele Friend

  • One Mathematic(S) or Many? Foundations of Mathematics in Twentieth-Century Mathematical Practice
    Andrei Rodin
  • Multiverse and the Society
    Mirna Džamonja
  • Implicitly Defining Mathematical Terms
    Demetra Christopoulou
  • Non-deductive Justification in Mathematics
    C. Paseau

Volume 4
Section XI “Experimental” Mathematics
Jessica Carter

  • Experimental Mathematics in Mathematical Practice
    Jessica Carter
  • The Role of Experiments in Experimental Mathematics
    Henrik Kragh Sørensen
  • Revisiting “The New 4CT Problem”
    Mark McEvoy
  • Proofs, Arbitrary Exemplifications, and Inductive Generalizations in Euler’s Mathematical Practice
    Giovanni Ferraro
  • Mathematical Experiments on Paper and Computer
    Dirk Schlimm and Juan Fernández González
  • Thought Experiments in Mathematics: From Fiction to Facts
    Irina Starikova
  • The Intimate Interplay Between Experimentation and Deduction: Some Classroom Implications
    Michael de Villiers and Hans Niels Jahnke

Section XII Views from Other Domains
Andrew Aberdein

  • Introduction to Views from Other Domains
    Andrew Aberdein
  • Inverting Hierarchies: The Sociology of Mathematical Practice
    Michael J. Barany and Milena I. Kremakova
  • Practice Makes Perfectoid
    Michael J. Barany
  • Mathematics Education Research on Mathematical Practice
    Keith Weber and Matthew Inglis
  • Argumentation in Mathematical Practice
    Andrew Aberdein and Zoe Ashton
  • Rhetorical Approaches to the Study of Mathematical Practice
    Mitchell Reyes
  • Bayesian Perspectives on Mathematical Practice
    James Franklin
  • Polymath as an Epistemic Community
    Patrick Allo, Jean Paul Van Bendegem, and Bart Van Kerkhove
  • Is Mathematics Connected to Religion?
    Stanisław Krajewski

Section XIII New Perspectives
Valeria Giardino

  • New Perspectives: An Introduction
    Valeria Giardino
  • What Are Mathematical Practices? The Web-of-Practices Approach
    José Ferreirós
  • Experiments in Mathematics: Fact, Fiction, or the Future?
    Jean Paul Van Bendegem
  • The Social Constitution of Mathematical Knowledge: Objectivity, Semantics, and Axiomatics
    Paola Cantù
  • The Epistemological Subject(s) of Mathematics
    Silvia De Toffoli
  • Agency in Mathematical Practice
    Yacin Hamami
  • The Language of Proofs: A Philosophical Corpus Linguistics Study of Instructions and Imperatives in Mathematical Texts
    Fenner Stanley Tanswell and Matthew Inglis

Section XIV Semiology of Mathematical Practice
Juan Luis Gastaldi

  • Introduction to the Semiology of Mathematical Practice
    Juan Luis Gastaldi
  • Signs as a Theme in the Philosophy of Mathematical Practice
    David Waszek
  • Structural Semiotics as an Ontology of Mathematics
    Roi Wagner
  • Shaping, Revisited
    Reviel Netz
  • Mathematical Practices and Written Evidence: General Reflections Based on a Historian’s Experience
    Karine Chemla
  • What Happens, from a Historical Point of View, When We Read a Mathematical Text?
    Lucien Vinciguerra
  • Symbolic Algebra as a Semiotic System
    Ladislav Kvasz
  • Reading Mathematical Texts with Structuralist Semiotics
    Anna Kiel Steensen
  • The Design of Mathematical Language
    Jeremy Avigad
  • How to Do Maths with Words: Neural Machine Learning Applications to Mathematics and Their Philosophical Significance
    Juan Luis Gastaldi

Index

(学術洋書部)